3v^2+29v+58=0

Simple and best practice solution for 3v^2+29v+58=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3v^2+29v+58=0 equation:


Simplifying
3v2 + 29v + 58 = 0

Reorder the terms:
58 + 29v + 3v2 = 0

Solving
58 + 29v + 3v2 = 0

Solving for variable 'v'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
19.33333333 + 9.666666667v + v2 = 0

Move the constant term to the right:

Add '-19.33333333' to each side of the equation.
19.33333333 + 9.666666667v + -19.33333333 + v2 = 0 + -19.33333333

Reorder the terms:
19.33333333 + -19.33333333 + 9.666666667v + v2 = 0 + -19.33333333

Combine like terms: 19.33333333 + -19.33333333 = 0.00000000
0.00000000 + 9.666666667v + v2 = 0 + -19.33333333
9.666666667v + v2 = 0 + -19.33333333

Combine like terms: 0 + -19.33333333 = -19.33333333
9.666666667v + v2 = -19.33333333

The v term is 9.666666667v.  Take half its coefficient (4.833333334).
Square it (23.36111112) and add it to both sides.

Add '23.36111112' to each side of the equation.
9.666666667v + 23.36111112 + v2 = -19.33333333 + 23.36111112

Reorder the terms:
23.36111112 + 9.666666667v + v2 = -19.33333333 + 23.36111112

Combine like terms: -19.33333333 + 23.36111112 = 4.02777779
23.36111112 + 9.666666667v + v2 = 4.02777779

Factor a perfect square on the left side:
(v + 4.833333334)(v + 4.833333334) = 4.02777779

Calculate the square root of the right side: 2.006932433

Break this problem into two subproblems by setting 
(v + 4.833333334) equal to 2.006932433 and -2.006932433.

Subproblem 1

v + 4.833333334 = 2.006932433 Simplifying v + 4.833333334 = 2.006932433 Reorder the terms: 4.833333334 + v = 2.006932433 Solving 4.833333334 + v = 2.006932433 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + v = 2.006932433 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + v = 2.006932433 + -4.833333334 v = 2.006932433 + -4.833333334 Combine like terms: 2.006932433 + -4.833333334 = -2.826400901 v = -2.826400901 Simplifying v = -2.826400901

Subproblem 2

v + 4.833333334 = -2.006932433 Simplifying v + 4.833333334 = -2.006932433 Reorder the terms: 4.833333334 + v = -2.006932433 Solving 4.833333334 + v = -2.006932433 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + v = -2.006932433 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + v = -2.006932433 + -4.833333334 v = -2.006932433 + -4.833333334 Combine like terms: -2.006932433 + -4.833333334 = -6.840265767 v = -6.840265767 Simplifying v = -6.840265767

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-2.826400901, -6.840265767}

See similar equations:

| 4.7*x=6.5 | | 9(9k+12n+6)= | | -6p-3p=2p | | log(6)(3x)+log(6)(4)=log(6)(24) | | 168=7(n+7) | | 2^-3x=1/1000 | | 3(-2p+2)=-20p+20 | | -4v-5=-5-v-3v | | 58.6+y=33 | | -4-a=-a-1 | | 5x-4y+6z=-3 | | 13-y=2y+4 | | 3x+9=-2 | | 1/3x^2=5=32 | | p/9-7=-6 | | ln(2x+4)=x+1 | | 4x+3x^3-x^5=0 | | 5a^2+16a-12= | | 6.3x-3.5=21.7 | | 4=-3w-(-7)/-8 | | 2.6x+3.1=10.6 | | 5+3x=-5x-67 | | -13=3x+6 | | 16y+10x=3784 | | 8y^2+24y+9=0 | | 8-6t=4(t-2) | | (x-2)x(2x-7)=0 | | 9x+2y-2=0 | | 3x+30=12s | | 5/3a^3b(-3/2a^2b^3)= | | 5-3(3-5)=13 | | 33000000000-(27.86)x^2=0 |

Equations solver categories